4772

.

June 2011

4772, June 2011, Markscheme

1.				
(a)	To not discontinue, i.e. to continue.	B1	to continue	
	"Will the minister not" is a form of words in which	B 1	double negation	
	the negation is not intended.	B1	understanding ~~	
		B1	language confusion	
(b)(i)	$[(A \land B) \lor (A \land C)] \land [D \lor (E \land \neg F)]$	M1	uses distributive rule	
	$\Leftrightarrow [(A \lor (A \land C)) \land (B \lor (A \land C))] \land [(D \lor E) \land (D \lor \sim F)]$	A1	distributive rule	ft
		A1	"distributive rule"	
	$\Leftrightarrow (A \lor (A \land C)) \land (B \lor (A \land C)) \land [(D \lor E) \land (D \lor \sim F)]$	M1	uses associative rule	
	$\Leftrightarrow A \land [(B \lor A) \land (B \lor C)] \land (D \lor E) \land (D \lor \sim F)$	A1	associative rule	ft
	$\Leftrightarrow A \land (B \lor A) \land (B \lor C) \land (D \lor E) \land (D \lor {\sim} F)$	A1	"associative rule"	SC if refers to "absorption" then +1
	$\Leftrightarrow A \land (B \lor C) \land (D \lor E) \land (D \lor {\sim} F)$	B 1	rest correct	
	or			
	$A \land (B \lor C) \land (D \lor E) \land (D \lor \sim F)$	MI	uses distributive rule	
		A1	distributive rule	ft
	$\Leftrightarrow [A \land (B \lor C)] \land (D \lor E) \land (D \lor \neg F)$	A1	"distributive rule"	
	$\Leftrightarrow [A \land (B \lor C)] \land [(D \lor E) \land (D \lor \neg F)]$	M1	uses associative rule	ft
		A1	associative rule	
	$\Leftrightarrow [(A \land B) \lor (A \land C)] \land [(D \lor E) \land (D \lor \sim F)]$	A1	"associative rule"	
	$\Leftrightarrow [(A \land B) \lor (A \land C)] \land [D \lor (E \land \neg F)]$	B 1	rest correct	
(ii)	Out, LBW! Either first square bracket and second	B1	"out"	
	square bracket, or all 4 conditions are satisfied	B 1	using either test	
(iii)	Can't have D and E both true at the same time.	B1		
	Logic still valid.	B1		
	Logic not concerned with consistency of input, only	B1		
	whether out or not.			

June 2011

2.				
(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1	time matrix route matrix	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1	replacing an ∞ by a correct value	
	1 2 3 4 1 30 15 7 2 2 15 30 2 2 3 7 2 4 4 4 2 2 4 4	A1	ft	
	1 2 3 4 1 14 9 7 2 2 9 4 2 2 3 7 2 4 4 4 2 2 4 4	A1	ft	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1 B1	entries other than row 3 col 1 of route matrix ft row 3 col 1 of route matrix cao	
1				

47	72		Mark Scheme	June 2011	
(ii)	$\begin{array}{c} 4 \\ 1 \\ 2 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 3 \\ 4 \\ 4$	B1	ft		
(iii)	Upper – nearest neighbour – e.g. $2+2+2+6 = 12$	M1 A1	nearest neighbour	mention of nearest neighbour or a nearest neighbour computation allow 2+2+2+7=13 etc for working in original network	
	Lower – e.g. "delete" 1 , and compute $(2+2)+2+4 = 10$	M1 A1	delete a vertex rest of computation	needs to be consistent with above	
(iv)	e.g. if the requirement is for part loads, and deliver to one department en route to another, then might save time.e.g. if the requirement is for part whole loads then might not be relevant.	B1 B1		answer should be valid and refer to the specific situation of the DAA	
(v)	A directed network.	B1			

June 2011

June 2011

4772

June	2011	
------	------	--

4.										
(i)	Defini	tion of	variable	es				B1		needs to say "number of"
	Max	5x +	-9y + 13	5z				B 1	objective	
	st	$\mathbf{x} + \mathbf{x}$	2y + 4z	≤ 60						
		15x	+ 25y +	$-40z \leq 10$	700			B1	constraints	
(ii)										
	Р	Х	у	Z	s1	s2	RHS			
	1	-5	-9	-15	0	0	0	M1	initial tableau	two slack variables
	0	1	2	4	1	0	60	A1	ft	
	0	15	25	40	0	1	700			
	1	-5/4	$\frac{-3/2}{1/2}$	0	15/4	0	15	M1	first iteration	identifying correct pivot
	0	5	5	0	-10	1	100	A1	ft	
	1	1/4	0	0	3/4	3/10	255	М1	second iteration	identifying correct nivet
	0	-1/4	0	1	5/4	-1/10	5		second heration	identifying correct prvot
	0	-1	1	0	-2	1/5	20	AI	π	
	Identif	ication	of basic	c variab	oles (y a	nd z)		B1	ft	
	+ value	es (inc	objectiv	ve)				B1	ft	

4772

4772											Μ	ark Scheme	June 2011
(iii)													
	Α	Р	Х	У	Z	s1	s2	s3	a	RHS			
	1	0	1	0	0	0	0	-1	0	5			
	0	1	1/4	0	0	3/4	3/10	0	0	255			
	0	0	-1/4	0	1	5/4	-1/10	0	0	5	B1	> row	
	0	0	1	1	0	-2	1/5	0	0	20	R1	new objective	
	0	0	1	0	0	0	0	-1	1	5	DI	new objective	
	1	0	0	0	0	0	0	0	-1	0	N/1	nivet	If from constably than M1 for first nivet A1 for final
	0	1	0	0	0	3/4	3/10	1/4	-1/4	253.75			If from scratch, then will for first proof, AT for final
	0	0	0	0	1	5/4	-1/10	-1/4	1/4	6.25	AI	objectives cao	objective row(s) and A1 for final constraint rows.
	0	0	0	1	0	-2	1/5	1	-1	15	AI	constraints cao for	
	0	0	1	0	0	0	0	-1	1	5		basic variables	
	or									B 1 1 3	or (same scheme)	
	P	2	K	у	Z	sl	s2	s3		RHS			
	1	-M-	+1/4	0	0	3/4	3/10	Ν	1 2	255–5M			
	0	-	-1/4	0	1	5/4	-1/10	()	5	B1	\geq row	
	0		1	1	0	-2	1/5	()	20	B1	new objective	
	1		1	0	0	2/4	2/10	-	4	252.75		U U	
	1		0	0	1	5/4	3/10	1/	4	255.75	M1	pivot	
	0		0	1	1	3/4	-1/10	-1/2	+	0.25	A1	objective cao	
	0		1	1	0	-2	1/3		1	5	A1	constraints cao for	
	0		1	0	0	0	0			5	111	basic variables	
(iv)	5, 15	5 and	6 at :	£250	000						B 1		
(v)	8 12	2 and	7 is f	feasił	ole ar	nd giv	es f.253	000			B1	B1	
(')	ID solution need not be "near" to LD solution								n		R1		
	11 30	Jun		cu no		ncai	ULI S	olulio	1				