4772, June 2011, Markscheme

1.

$$
\text { (a) } \begin{aligned}
& \text { To not discontinue, i.e. to continue. } \\
& \text { "Will the minister not .." is a form of words in which } \\
& \text { the negation is not intended. } \\
& \text { (b) }(\mathrm{i}) {[(A \wedge B) \vee(A \wedge C)] \wedge[D \vee(E \wedge \sim F)] } \\
& \Leftrightarrow[(A \vee(A \wedge C)) \wedge(B \vee(A \wedge C))] \wedge[(D \vee E) \wedge(D \vee \sim F)] \\
& \Leftrightarrow(A \vee(A \wedge C)) \wedge(B \vee(A \wedge C)) \wedge[(D \vee E) \wedge(D \vee \sim F)] \\
& \Leftrightarrow A \wedge[(B \vee A) \wedge(B \vee C)] \wedge(D \vee E) \wedge(D \vee \sim F) \\
& \Leftrightarrow A \wedge(B \vee A) \wedge(B \vee C) \wedge(D \vee E) \wedge(D \vee \sim F) \\
& \Leftrightarrow A \wedge(B \vee C) \wedge(D \vee E) \wedge(D \vee \sim F) \\
& \text { or } \\
& A \wedge(B \vee C) \wedge(D \vee E) \wedge(D \vee \sim F) \\
& \Leftrightarrow[A \wedge(B \vee C)] \wedge(D \vee E) \wedge(D \vee \sim F) \\
& \Leftrightarrow[A \wedge(B \vee C)] \wedge[(D \vee E) \wedge(D \vee \sim F)] \\
& \Leftrightarrow[(A \wedge B) \vee(A \wedge C)] \wedge[(D \vee E) \wedge(D \vee \sim F)] \\
& \Leftrightarrow[(A \wedge B) \vee(A \wedge C)] \wedge[D \vee(E \wedge \sim F)]
\end{aligned}
$$

(ii) Out, LBW! Either first square bracket and second square bracket, or all 4 conditions are satisfied
(iii) Can't have D and E both true at the same time.

Logic still valid.
Logic not concerned with consistency of input, only whether out or not.

B1	to continue	
B1	double negation	
B1	understanding ~~	
B1	language confusion	
M1	uses distributive rule	
A1	distributive rule	ft
A1	"distributive rule"	
M1	uses associative rule	
A1	associative rule	ft
A1	"associative rule"	SC if refers to "absorption" then +1
B1	rest correct	
M1	uses distributive rule	
A1	distributive rule	ft
A1	"distributive rule"	
M1	uses associative rule	ft
A1	associative rule	
A1	"associative rule"	
B1	rest correct	
B1	"out"	
B1	using either test	
B1		
B1		
B1		

(i)

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	∞	15	7	$\mathbf{2}$
$\mathbf{2}$	15	∞	2	2
$\mathbf{3}$	7	2	∞	10
$\mathbf{4}$	2	2	10	∞

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	∞	15	7	2
$\mathbf{2}$	15	30	2	2
$\mathbf{3}$	7	2	14	9
$\mathbf{4}$	2	2	9	4

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	30	15	7	2
$\mathbf{2}$	15	30	2	2
$\mathbf{3}$	7	2	4	4
$\mathbf{4}$	2	2	4	4

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	14	9	7	2
$\mathbf{2}$	9	4	2	2
$\mathbf{3}$	7	2	4	4
$\mathbf{4}$	2	2	4	4

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	4	4	6	2
$\mathbf{2}$	4	4	2	2
$\mathbf{3}$	6	2	4	4
$\mathbf{4}$	2	2	4	4

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	1	2	3	4
$\mathbf{2}$	1	2	3	4
$\mathbf{3}$	1	2	3	4
$\mathbf{4}$	1	2	3	4

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	1	2	3	4
$\mathbf{2}$	1	1	3	4
$\mathbf{3}$	1	2	1	1
$\mathbf{4}$	1	2	1	1

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	2	2	3	4
$\mathbf{2}$	1	1	3	4
$\mathbf{3}$	1	2	2	2
$\mathbf{4}$	1	2	2	1

B1 time matrix

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	3	3	3	4
$\mathbf{2}$	3	3	3	4
$\mathbf{3}$	1	2	2	2
$\mathbf{4}$	1	2	2	1

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	4	4	4	4
$\mathbf{2}$	4	3	3	4
$\mathbf{3}$	2	2	2	2
$\mathbf{4}$	1	2	2	1

B1 route matrix

M1 replacing an ∞ by a correct value
A1

A1 ft

A1 ft

A1 entries other than row 3 col 1 of route matrix ... ft
B1 row 3 col 1 of route matrix ... cao
(ii)

(iii) Upper - nearest neighbour - e.g. $2+2+2+6=12$

Lower - e.g. "delete" 1 , and compute $(2+2)+2+4=10$
(iv) e.g. if the requirement is for part loads, and deliver to one department en route to another, then might save time.
e.g. if the requirement is for part whole loads then might not be relevant.
(v) A directed network.

B1 ft

M1 nearest neighbour
A1
M1 delete a vertex
A1 rest of computation
B1

B1

B1
mention of nearest neighbour or a nearest neighbour computation
allow $2+2+2+7=13$ etc for working in original network
needs to be consistent with above
answer should be valid and refer to the specific situation of the DAA
3.

4.
(i) Definition of variables \quad B

Max $\quad 5 x+9 y+15 z$
st $\quad x+2 y+4 z \leq 60$
$15 x+25 y+40 z \leq 700$
(ii)

P	x	y	z	s 1	s2	RHS
1	-5	-9	-15	0	0	0
0	1	2	4	1	0	60
0	15	25	40	0	1	700
1	$-5 / 4$	$-3 / 2$	0	$15 / 4$	0	225
0	$1 / 4$	$1 / 2$	1	$1 / 4$	0	15
0	5	5	0	-10	1	100
1	$1 / 4$	0	0	$3 / 4$	$3 / 10$	255
0	$-1 / 4$	0	1	$5 / 4$	$-1 / 10$	5
0	-1	1	0	-2	$1 / 5$	20

Identification of basic variables (y and z) + values (inc objective)

B1
B1 objective

B1 constraints

M1 initial tableau
A1 ft

M1 first iteration
A1 ft
M1 second iteration
A1 ft

B1 ft
B1 ft
needs to say "number of"
two slack variables
identifying correct pivot
identifying correct pivot

A	P	x	y	z	s1	s2	s3	a	RHS
1	0	1	0	0	0	0	-1	0	5
0	1	$1 / 4$	0	0	$3 / 4$	$3 / 10$	0	0	255
0	0	$-1 / 4$	0	1	$5 / 4$	$-1 / 10$	0	0	5
0	0	1	1	0	-2	$1 / 5$	0	0	20
0	0	1	0	0	0	0	-1	1	5
1	0	0	0	0	0	0	0	-1	0
0	1	0	0	0	$3 / 4$	$3 / 10$	$1 / 4$	$-1 / 4$	253.75
0	0	0	0	1	$5 / 4$	$-1 / 10$	$-1 / 4$	$1 / 4$	6.25
0	0	0	1	0	-2	$1 / 5$	1	-1	15
0	0	1	0	0	0	0	-1	1	5

B1 \geq row
B1 new objective

M1 pivot
A1 objectives cao
A1 constraints cao for basic variable
Or

P	X	y	z	s 1	s 2	s 3	RHS
1	$-\mathrm{M}+1 / 4$	0	0	$3 / 4$	$3 / 10$	M	$255-5 \mathrm{M}$
0	$-1 / 4$	0	1	$5 / 4$	$-1 / 10$	0	5
0	1	1	0	-2	$1 / 5$	0	20
0	1	0	0	0	0	-1	5
1	0	0	0	$3 / 4$	$3 / 10$	$1 / 4$	253.75
0	0	0	1	$5 / 4$	$-1 / 10$	$-1 / 4$	6.25
0	0	1	0	-2	$1 / 5$	1	15
0	1	0	0	0	0	-1	5

(iv) 5, 15 and 6 at $£ 250000$
(v) 8,12 and 7 is feasible and gives $£ 253000$ IP solution need not be "near" to LP solution

B1 \geq row
B1 new objective

M1 pivot
A1 objective cao
A1 constraints cao for basic variables B1

B1 B1

B1

If from scratch, then M1 for first pivot, A1 for final objective row(s) and A1 for final constraint rows.

